
Writing Well-behaved
Unix Utilities

Rob Miller • robm.me.uk • @robmil

http://robm.me.uk

Who are you?
• Head of Digital at Big Fish

• We’re a design, branding and
marketing consultancy

• Which is to say:

Who are you?
• I’ve been programming in Ruby for

several years now

• But I don’t do much web development  
any more

• My world is reporting, sysadmin, ops,
general tools and utilities

• Ruby is my tool of choice

The command-line
spectrum

• One-liner

• Script

• Application

The command-line
spectrum

• One-liner

• Script

• Application

What makes something  
an “application”?

• Intended for use by others, or for the
foreseeable future

• General-purpose

• Robust

• Reusable

• Built to last

An aside: “Unix”
• A grouping of computer operating

systems that behave in a relatively
standard way

• In practical terms:

• Linux (Ubuntu, Debian, Fedora, etc.)

• Mac OS X

• BSDs (FreeBSD, OpenBSD, etc.)

The Unix Philosophy

“…no single program or idea makes
[Unix] work well. Instead, what makes it
effective is the approach to
programming… at its heart is the idea
that the power of a system comes more
from the relationships among programs
than from the programs themselves.

The Unix Philosophy

“Many UNIX programs do
quite trivial things in isolation,
but, combined with other
programs, become general and
useful tools.”

— Brian Kernighan, 1984

The Unix Philosophy

“This is the Unix philosophy: write
programs that do one thing and do
it well. Write programs to work
together. Write programs to handle
text streams, because that is a
universal interface.”

— Doug McIlroy, c. 1978

The Unix Philosophy
• To summarise: good Unix applications

play well with others

• They respect conventions

• They’re reusable and general in nature

• They interact with other processes and
accept interaction in standard ways
(files, pipes, sockets)

In Ruby

• What does this mean in the concrete?

• How do we write Ruby applications
that fit this philosophy?

• Why is Ruby a great choice for writing
command-line applications?

A good application…

• works with standard input and output

• works with files

• communicates via its exit status

• respects resource limits

• handles signals

• accepts command-line options

…works with standard input
and standard output

• Pipelines are the foundation of Unix

• The goal:

$ grep foo bar | your-app | head

• Assume that input will come from an
arbitrary program, and that your
output will be fed into one too

In Ruby
$stdin.each do |line|
 puts some_modification(line)
end

• Processes input as a stream — handles
arbitrarily large input (other streaming
methods work too — each_char,
read(bytes), etc.)

• Outputs to $stdout, so can be
redirected/piped by the user to a file/
another process

…works with files too

• The goal:

$ cat foo.txt bar.txt | your-app

$ your-app foo.txt bar.txt

• The ultimate flexibility. As
implemented by cat, grep, and most
other Unix utilities

In Ruby
ARGF.each do |line|
 # process a line of input
end

• No more effort than reading from  
standard input

• If ARGV is non-empty, its contents will  
be read as files

• If it is empty, standard input will be  
used instead

…sets an exit status
• The goal:

$ your-app

$ echo $?

• Was the process successful or not?

• 0 for success, >0 for failure — so you 
can communicate up to 255 different
failure states

In Ruby
if successful?
 exit
else
 exit 1
end

• Use exit to stop execution of your script
and return a successful exit status

• Pass it an argument to alter the exit status

• Document them!

…respects resource limits

• Processes have resource limits

• You should respect them, but you  
can also alter them if you need to  
(be reasonable!)

• Avoid the dreaded Errno::EMFILE:
Too many open files

In Ruby

hard, soft = Process.getrlimit(:NOFILE)

• Check what the limits of your current
process are (both hard and soft) and take
appropriate action

• Here we check EMFILE, the limit of the
number of file descriptors that we can
have open at one time

In Ruby
begin
 File.open(“foo.txt”)
rescue Errno::EMFILE
 # Do something graceful!
end

• Actually handle resource-limit–related
errors, and do something sensible

• That might be: increase the limit and try
the same operation again

In Ruby

Process.setrlimit(:NOFILE, 4096)

• Change the soft limit if you need to; you’re
generally allowed to!

• Applies to the current process and its
children, including subshells — so you can
make sure third-party code behaves too

…handles signals
• The goal: to be able to communicate with our

process using signals

• Common signals:

• SIGINT: interrupt (Ctrl+C)

• SIGCHLD: when a child process terminates

• SIGHUP: when the terminal is closed

• SIGUSR1, SIGUSR2: custom signals

In Ruby
trap :INT do
 # close database connection,
 # other necessary cleanup
 exit
end

• trap registers a handler for a particular
signal (in this case SIGINT)

• When that signal is sent, our block is
executed

…accepts  
command-line options
• The goal:

$ your-app --verbose -o ‘file.txt’

• Allow our users to change behaviour
based on arguments passed

• Makes our options scriptable — not
something that has to be chosen from a
menu or read from a config file

In Ruby
require “optparse”
!

options = { verbose: false }
OptionParser.new do |opts|
 opts.banner = "Usage: app.rb [options]"
!

 opts.on("-v", "--verbose") do |v|
 options[:verbose] = true
 end
end.parse!

In Ruby

• OptionParser, part of the standard library

• Gives you:

• Options, including short aliases

• Automatic -h help output

• Removes options from ARGV, so ARGF
works as you expect

• No need to use a Gem!

Wrapping Up

